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Logical Frameworks

• A formalism to represent other formalisms

• Support for natural deduction

• A common basis for implementations

• Type theories are commonly used, but Isabelle 
uses a simple meta-logic whose main primitives are 

• ⇒ (implication) 

• Λ (universal quantification)
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P ⇒ (Q ⇒ P ∧ Q))

P➝Q ⇒ (P ⇒ Q)

P ∧ Q ⇒ P

P ∧ Q ⇒ Q
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Meta-implication

• The symbol ⇒ (or ==>) expresses the relationship 

between premise and conclusion

• ... and between subgoal and goal.

• It is distinct from ➝, which is not part of Isabelle’s 
underlying logical framework.

• P⇒(Q⇒R) is abbreviated as ⟦P;Q⟧ ⇒ R 
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A Trivial Proof

reduce the goal 
using the given rule
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Unknowns in Subgoals

We need some 
instance of mp!

formula placeholder
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Unknowns and Unification

?P3 has been 
replaced by P
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Discharging Assumptions

(P ⇒ Q) ⇒ P➝Q

⟦P ∨ Q; P⇒R; Q⇒R⟧ ⇒ 
R 
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A Proof using Assumptions

Subgoal is an implication, 
no assumptions
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After Implies-Introduction

Prove P using P ∨ P

Assumption will be 
used, then deleted
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Disjunction Elimination

erule is good with 
elimination rules

An instance of ?P ∨ ?Q 
has been found
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The Final Step

+ applies a method 
one or more times
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Quantifiers

⟦∃x.P(x); Λx.P(x)⇒Q⟧ ⇒ 
Q 

P(x) ⇒ ∃x.P(x)

meta-universal quantifier 
states the variable condition
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A Tiny Quantifier Proof

Find, use, delete an 
existential assumption
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Conjunction Elimination

Find, use, delete a 
conjunctive assumption

The x that is 
claimed to exist
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Now for ∃-Introduction

Two assuptions 
instead of one

Apply the rule exI
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An Unknown for the Witness

Proof by assumption will 
unify these two terms



Done!


